88 research outputs found

    On the ADI method for the Sylvester Equation and the optimal-H2\mathcal{H}_2 points

    Full text link
    The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal in the sense that for the Lyapunov equation, they yield a residual which is orthogonal to the rational Krylov projection subspace. Via several examples, we show that the pseudo H2-optimal shifts consistently yield nearly optimal low rank approximations to the solutions of the Lyapunov equations

    Model Reduction of Descriptor Systems by Interpolatory Projection Methods

    Get PDF
    In this paper, we investigate interpolatory projection framework for model reduction of descriptor systems. With a simple numerical example, we first illustrate that employing subspace conditions from the standard state space settings to descriptor systems generically leads to unbounded H2 or H-infinity errors due to the mismatch of the polynomial parts of the full and reduced-order transfer functions. We then develop modified interpolatory subspace conditions based on the deflating subspaces that guarantee a bounded error. For the special cases of index-1 and index-2 descriptor systems, we also show how to avoid computing these deflating subspaces explicitly while still enforcing interpolation. The question of how to choose interpolation points optimally naturally arises as in the standard state space setting. We answer this question in the framework of the H2-norm by extending the Iterative Rational Krylov Algorithm (IRKA) to descriptor systems. Several numerical examples are used to illustrate the theoretical discussion.Comment: 22 page
    • …
    corecore